## Vibrational Spectra and Normal Coordinate Calculations for Methyl-1-propynylmercury(II) and Its Deuterated Analogues<sup>†</sup>

Yoshika Imai\* and Koyo Aida

Department of Applied Science, Faculty of Engineering, Tohoku University, Sendai 980 (Received March 31, 1979)

Infrared spectra (4000−80 cm<sup>-1</sup>) of CH<sub>3</sub>HgC≡CCH<sub>3</sub>, CD<sub>3</sub>HgC≡CCH<sub>3</sub>, CH<sub>3</sub>HgC≡CCD<sub>3</sub>, and CD<sub>3</sub>HgC≡CCD<sub>3</sub> have been obtained in carbon tetrachloride, carbon disulfide and benzene solutions, as well as in the solid state at liquid nitrogen temperature. Raman spectra (4000−0 cm<sup>-1</sup>) have also been recorded on benzene solutions and on solids at room temperature. Assignments for all the fundamentals have been made assuming C<sub>3v</sub> molecular symmetry. Normal coordinate calculations have been carried out in order to confirm the proposed assignments.

In a previous paper<sup>1)</sup> a report was given on the vibrational spectra and normal coordinate calculations for methylethynylmercury(II). The study has now been extended to methyl-1-propynylmercury(II). Although many acetylides of the type RHgC $\equiv$ CR' have been prepared,<sup>2)</sup> no vibrational study on these compounds except methylethynylmercury(II) seems to have been reported. In the present study, infrared and Raman spectra have been obtained for methyl-1-propynylmercury(II) and its deuterated analogues. Assignments for all the fundamentals are made assuming  $C_{3v}$  symmetry. Normal coordinate calculations have been carried out in order to confirm the proposed assignments.

### **Experimental**

Methyl-1-propynylmercury(II) was prepared in the following way.

Methylmercury(II) iodide was dissolved in an aqueous solution of potassium hydroxide. Methylacetylene, generated by the action of 1,2-dibromopropane with potassium hydroxide in ethanol,<sup>3)</sup> was passed through the solution. White precipitates were filtered and washed with water and then dried in a desiccator over potassium hydroxide pellets. The crude product was purified by sublimation in a vacuum.

Deuterated compounds were prepared in a similar way using methyl-d<sub>3</sub>-mercury(II) bromide and/or methylacetylene-d<sub>4</sub>, prepared from methyl-d<sub>3</sub>-magnesium bromide and mercury(II) bromide, and by the action of D<sub>2</sub>O with magnesium carbide,<sup>4)</sup> respectively.

Methyl-1-propynylmercury(II) melts at 80—81 °C (no value was found in literature). The mercury content was determined for the undeuterated compound by the method of Spahr et al.<sup>5)</sup> Found, 78.0%. Calcd for C<sub>4</sub>H<sub>6</sub>Hg, 78.8%. The molecular weight was also cryoscopically determined in benzene. Calcd for C<sub>4</sub>H<sub>6</sub>Hg, 255. Measured, 260.

The infrared spectra in the range 4000—400 cm<sup>-1</sup> were recorded on a Perkin-Elmer 337 spectrophotometer in annealed solid films at liquid nitrogen temperature. Cooling was necessary to prevent sublimation during the course of the measurements. The spectra were also obtained in carbon tetrachloride and carbon disulfide solutions. The instrument was calibrated in the usual way.<sup>6</sup>

Far-infrared spectra in the range 400— $80~\rm cm^{-1}$  were recorded on a Hitachi FIS-III Far-infrared spectrophotometer which

had been evacuated in order to remove atmospheric water vapor. The spectra were measured in annealed solid films at liquid nitrogen temperature in order to prevent sublimation. The spectra in benzene solutions were also obtained using polyethylene bags. The instrument was calibrated with water vapor frequencies.

Raman spectra were recorded in the solid state in capillary tubes on a JEOL JRS-S1 Raman spectrophotometer equipped with a 50 mW NEC GLG 108 He-Ne laser. The instrument was calibrated with the emission lines of Ne. The spectra were also measured in benzene solutions in order to obtain qualitative polarizations.

### Results and Vibrational Assignments

The infrared and Raman spectra of the four isotopic methyl-1-propynylmercury(II) are shown in Figs. 1 and 2. The symmetry coordinates are summarized in Table 1 and observed frequencies are given in Tables 2—4.

The CHgC skeleton is linear in many organomercurials. It is thus reasonable to assume the same skeleton for the present compounds. Since the two methyl groups in each compound are separated from each other to a greater extent than those in dimethylmercury (II), where the free rotation of methyl groups is believed to be present, it is likely that the free rotation

Table 1. Description of the symmetry coordinates for methyl-1-propynylmercury (II)  $\label{eq:table_eq}$ 

|                                                 | . ,            |                 |
|-------------------------------------------------|----------------|-----------------|
| Vibrational mode                                | Coor           | dinate          |
| vibrational mode                                | $A_1$          | E               |
| CH <sub>3</sub> (CD <sub>3</sub> ) st. (Me-CC)  | S <sub>1</sub> | S <sub>10</sub> |
| $\mathrm{CH_3}(\mathrm{CD_3})$ st. (Me-Hg)      | $\mathbf{S_2}$ | $S_9$           |
| C≡C st.                                         | $S_3$          |                 |
| $CH_3(CD_3)$ def. (Me-CC)                       | $S_4$          | $S_{11}$        |
| CH <sub>3</sub> (CD <sub>3</sub> ) def. (Me-Hg) | $S_5$          | $S_{12}$        |
| C–C st.                                         | $S_6$          |                 |
| $\mathrm{CH_3}(\mathrm{CD_3})$ rock. (Me–CC)    |                | $S_{13}$        |
| $CH_3(CD_3)$ rock. (Me-Hg)                      |                | $S_{14}$        |
| $CH_3$ - $Hg(CD_3$ -) st.                       | $S_7$          |                 |
| Hg-CC st.                                       | $S_8$          |                 |
| CCC def.                                        |                | $S_{15}$        |
| CCHg def.                                       |                | S <sub>16</sub> |
| CHgC def.                                       |                | S <sub>17</sub> |

Abbreviations: st., stretching; def., deformation; rock., rocking.

<sup>&</sup>lt;sup>†</sup> A preliminary report of this work was presented at the 37th National Meeting of the Chemical Society of Japan, Yokohama, April 1978.

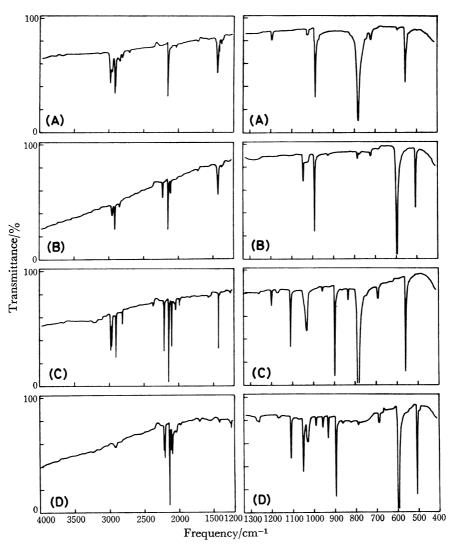



Fig. 1. Infrared spectra of CH<sub>3</sub>HgC≡CCH<sub>3</sub> (A), CD<sub>3</sub>HgC≡CCH<sub>3</sub> (B), CH<sub>3</sub>HgC≡CCD<sub>3</sub> (C), and CD<sub>3</sub>HgC≡CCD<sub>3</sub> (D), in the solid state at −196 °C.

Table 2. Observed and calculated frequencies  $(cm^{-1}) \ \ for \ CH_3HgC{\equiv}CCH_3$ 

Table 3. Observed and calculated frequencies  $(cm^{-1}) \ \ for \ CD_3HgC \equiv CCH_3$ 

|     |       | <u>.</u> ` |       |                  |       |                      |           |          |       |      |       |        |       |                   |                   |                  |
|-----|-------|------------|-------|------------------|-------|----------------------|-----------|----------|-------|------|-------|--------|-------|-------------------|-------------------|------------------|
| N.T | Infra | ared       | Ra    | man              | 011   | DED                  |           | Infrared |       | Rai  | man   | 0-1-1  | DED   |                   |                   |                  |
| No. | 1:1   | <u> </u>   | 1:1   |                  | Calcd | PED                  |           | No.      | 11.1  | 1    | 1:1   |        | Calcd | PED               |                   |                  |
|     | solid | soln       | solid | soln             |       |                      |           |          | solid | soln | solid | som    |       |                   |                   |                  |
| 1   | 2911  | 2914       | 2910  | 2915 p           | 2920  | $100S_1$             |           | 1        | 2914  | 2913 | 2910  | 2910 p | 2920  | $100S_1$          |                   |                  |
| 2   | 2901  | 2906       | 2900  | $2905\mathrm{p}$ | 2904  | $98S_2$              |           | 2        | 2119  | 2120 | 2113  | 2107 p | 2119  | $94S_2$           |                   |                  |
| 3   | 2150  | 2157       | 2147  | 2158 p           | 2152  | $85S_3 - 11$         | $1S_6$    | 3        | 2151  | 2159 | 2145  | 2160 p | 2152  | $84S_3$           | $11S_6$           |                  |
| 4   | 1380  | 1367       | 1370  | 1371             | 1371  | $93S_4$              | -         | 4        | 1375  | 1370 | 1368  | 1372   | 1372  | $93S_4$           |                   |                  |
| 5   | 1197  | 1200       | 1196  | 1202 p           | 1201  | 78S <sub>5</sub> 17  | $7S_2$    | 5        | 929   | 930  | 929   | 932 p  | 927   | $69S_5$           | $19S_2$           | 10S <sub>7</sub> |
| 6   | 990   | 997        |       |                  | 997   | 77S <sub>6</sub> 17  | $7S_8$    | 6        | 991   | 997  |       |        | 999   | $73S_6$           | $15S_8$           |                  |
| 7   | 556   | 553        | 555   | 556 p            | 558   | 91S <sub>7</sub>     | •         | 7        | 507   | 504  | 505   | 508 p  | 503   | $78S_7$           | $12S_5$           |                  |
| 8   | 336   | 340        | 330   | 340 p            | 341   | 74S <sub>8</sub> 12  | $2S_7$    | 8        | 337   | 339  | 338   | 340 p  | 337   | $71S_8$           | $15S_7$           |                  |
| 9   | 2980  | 2977       | 2980  | 2980             | 2981  | 100S <sub>9</sub>    | •         | 9        | 2230  | 2228 | 2220  | 2220   | 2222  | $99S_9$           |                   |                  |
| 10  | 2950  | 2945       | 2948  |                  | 2956  | 100S <sub>19</sub>   |           | 10       | 2950  | 2950 | 2951  |        | 2956  | $100S_{10}$       |                   |                  |
| 11  | 1435  | 1437       | 1430  |                  | 1440  | $91S_{11}$           |           | 11       | 1429  | 1437 | 1430  |        | 1440  | $91S_{11}$        |                   |                  |
| 12  | 1421  | 1412       |       |                  | 1416  | $97S_{12}$           |           | 12       | 1046  | 1026 | 1030  |        | 1025  | $98S_{12}$        |                   |                  |
| 13  | 1028  | 1021       | 1025  |                  | 1030  | $88S_{13}$           |           | 13       | 1029  | 1026 | 1030  |        | 1030  | $88S_{13}$        |                   |                  |
| 14  | 782   | 772        | 785   |                  | 780   | $97S_{14}$           |           | 14       | 596   | 589  |       |        | 579   | $99S_{14}$        |                   |                  |
| 15  |       |            | 366   | 363              | 365   | 74S <sub>15</sub> 25 | $5S_{16}$ | 15       |       |      | 364   | 360    | 365   | $74S_{15}$        | $25S_{16}$        |                  |
| 16  | 220   | 203        | 219   | 205              | 200   | 79S <sub>16</sub> 2  |           | 16       | 212   | 195  | 210   | 196    | 199   | $80S_{16}$        | 20S <sub>17</sub> |                  |
| 17  |       |            | 73    |                  | 76    | 69S <sub>17</sub> 29 |           | 17       |       |      | 70    |        | 69    | 70S <sub>17</sub> |                   |                  |

Abbreviation: p, polarized.

Abbreviation: p, polarized.

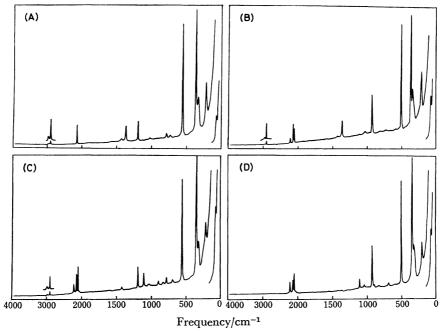



Fig. 2. Raman spectra of CH<sub>3</sub>HgC≡CCH<sub>3</sub> (A), CD<sub>3</sub>HgC≡CCH<sub>3</sub> (B), CH<sub>3</sub>HgC≡CCD<sub>3</sub> (C), and CD<sub>3</sub>HgC≡CCD<sub>3</sub> (D), in the solid state at room temperature.

Table 4. Observed and calculated frequencies  $(cm^{-1})$  for  $CH_3HgC\equiv CCD_3$ 

| No.  | Infrared |      | Raman |                  | Calcd | PED               |                  |      |
|------|----------|------|-------|------------------|-------|-------------------|------------------|------|
| 110. | solid    | soln | solid | soln             | Calcu | 1110              |                  |      |
| 1    | 2102     | 2107 | 2105  | 2110 p           | 2092  | 78S <sub>1</sub>  | 20S <sub>3</sub> |      |
| 2    | 2902     | 2903 | 2905  | $2908\mathrm{p}$ | 2905  | $97S_2$           |                  |      |
| 3    | 2149     | 2156 | 2152  | 2150 p           | 2167  | $65S_3$           | $20S_1$          | 12S  |
| 4    | 1110     | 1113 | 1108  | 1111             | 1109  | $54S_4$           | $38S_6$          |      |
| 5    | 1200     | 1200 | 1190  | 1201 p           | 1201  | $79S_5$           | $17S_2$          |      |
| 6    | 899      | 903  | 896   |                  | 902   | $39S_6$           | $40S_4$          | 18S, |
| 7    | 559      | 556  | 555   | 560 p            | 555   | $93S_7$           |                  |      |
| 8    | 321      | 325  | 313   | 325 p            | 326   | $72S_8$           | $10S_7$          |      |
| 9    | 2979     | 2977 | 2981  |                  | 2981  | 100S <sub>9</sub> |                  |      |
| 10   | 2217     | 2209 | 2221  | 2220             | 2204  | $98S_{10}$        |                  |      |
| 11   | 1032     | 1038 | 1039  |                  | 1033  | $94S_{11}$        |                  |      |
| 12   | 1425     | 1412 | 1425  |                  | 1416  | $97S_{12}$        |                  |      |
| 13   | 835      | 829  | 830   |                  | 817   | $84S_{13}$        | $11S_{15}$       |      |
| 14   | 783      | 774  | 780   |                  | 780   | $97S_{14}$        |                  |      |
| 15   | 345      |      | 347   | 348              | 343   | $68S_{15}$        | $28S_{16}$       |      |
| 16   | 209      | 196  | 209   | 195              | 192   |                   | $24S_{17}$       |      |
| 17   |          |      | 72    |                  | 74    | $67S_{17}$        | $30S_{16}$       |      |

Abbreviation: p, polarized.

takes place also in methyl-1-propynylmercury(II). However, the observed spectra can satisfactorily be explained on the assumption of  $C_{3v}$  symmetry (a staggered form) for these molecules. With this symmetry, the molecule is expected to have  $8A_1$ ,  $A_2$ , and 9E vibrational modes, in which the  $A_2$  mode is inactive in both the infrared and Raman spectra, while the  $A_1$  and the E modes are active in both.

Since the vibrational coupling of the two methyl groups in a molecule is expected to be very small, vibrations of one methyl group are hardly influenced by deuteration of the other. Taking their isotopic shifts and polarizations of Raman bands into consideration, together with the data for related compounds, 9,10) assignments for the methyl groups are easily made.

A strong infrared absorption at ca. 2150 cm<sup>-1</sup> in each isotopic species is hardly affected by deuteration and the corresponding Raman band in solution is polarized. This is undoubtedly assigned to the C=C stretching.

C–C stretching vibrations for CH<sub>3</sub>C≡N and CH<sub>3</sub>C≡ CH<sup>10</sup>) have been observed at *ca.* 900 cm<sup>-1</sup>. We have assigned the strong infrared bands at *ca.* 990 cm<sup>-1</sup> for CH<sub>3</sub>HgC≡CCH<sub>3</sub> and CD<sub>3</sub>HgC≡CCH<sub>3</sub> to this mode. Upon deuteration of the 1-propynyl group, these bands shift to *ca.* 900 cm<sup>-1</sup> for CH<sub>3</sub>HgC≡CCD<sub>3</sub> and CD<sub>3</sub>HgC≡CCD<sub>3</sub>, suggesting a vibrational coupling between the C–C stretching and the vibrations of the neighbouring methyl group.

The remaining skeletal vibrations are expected to appear below 600 cm<sup>-1</sup>. In the solution Raman spectrum for CH<sub>3</sub>HgC≡CCH<sub>3</sub>, the four bands appear at 556, 363, 340, and 205 cm<sup>-1</sup>, the bands at 556 and 340 cm<sup>-1</sup> being polarized. Upon deuteration of the methyl group (CD<sub>3</sub>HgC≡CCH<sub>3</sub>), the 556 cm<sup>-1</sup> band shifts to 508 cm<sup>-1</sup>, while the 340 cm<sup>-1</sup> band remains at the same position. In contrast, the 340 cm<sup>-1</sup> band shifts to 325 cm<sup>-1</sup> upon deuteration of the 1-propynyl group (CH<sub>3</sub>HgC≡CCD<sub>3</sub>). Thus, the 556 cm<sup>-1</sup> band can be assigned to the CH<sub>3</sub>-Hg stretching and the 340 cm<sup>-1</sup> to the Hg-CC stretching vibrations. The remaining two bands at 363 and 205 cm<sup>-1</sup> seem to be due to the skeletal deformations. The former band slightly shifts to lower frequency upon deuteration of the 1-propynyl group, while the latter band exhibits a very small isotopic shift upon deuteration of either methyl or 1propynyl group. The HgCC deformation in CH<sub>3</sub>HgC≡ CH1) has been assigned at 272 cm-1, lower than the CCC deformation in CH<sub>3</sub>C≡CH<sup>10)</sup> at 336 cm<sup>-1</sup>. From

the results, the 205 cm<sup>-1</sup> band is assigned to HgCC deformation and the 306 cm<sup>-1</sup> to CCC deformation.

The assignment of CHgC deformation is fairly difficult, since the mode is expected to appear below  $150~\rm cm^{-1}$  in weak intensity. In this study, the Raman bands at ca.  $70~\rm cm^{-1}$  in the solid state were tentatively assigned to this mode. No solution Raman spectra in this range could be observed owing to obscurity in the background.

# Normal Coordinate Calculations and Discussion

Normal coordinate calculations were carried out by Wilson's GF-matrix method on an ACOS 77/700 computer at the Computer Center, Tohoku University, using the iterative least-squares procedure in the usual way. For lack of structural data, the molecular parameters were transferred from those of CH3HgCl,11)  $CH_3HgC\equiv N^{12}$  and  $CH_3C\equiv CH;^{13}$  r(C-H) of  $CH_3CC$ , 1.11 Å; r(C-H) of  $CH_3$ , 1.10 Å; r(C-C), 1.46 Å;  $r(C \equiv C)$ , 1.21 Å;  $r(CH_3-Hg)$ , 2.08 Å; r(Hg-CC), 2.05 Å;  $\angle HCH$ of CH<sub>3</sub>CC, 108.5°; ∠HCH of CH<sub>3</sub>, 110.7°. The leastsquares refinement was carried out in terms of the symmetry force constants, which were fitted to the infrared frequencies in solutions, except for the HgCC and CHgC deformations which were taken from the Raman spectra for solutions and solids, respectively, for the four isotopic species simultaneously.

The symmetry force constants, together with uncertainties from the last cycle of the least-squares refinements, are given in Table 6. The average errors are 0.35% and 0.97% for the  $A_1$  and E vibrations, respectively, the sum of the weighted squares of errors  $\sum (\lambda_{\rm obsd} - \lambda_{\rm calcd})^2/\lambda_{\rm obsd}$  being  $2.39 \times 10^{-3}$  and  $2.54 \times 10^{-3}$  for the  $A_1$  and E vibrations, respectively. The agreements between the calculated and the observed

Table 5. Observed and calculated frequencies  $(cm^{-1}) \ \ for \ CD_3HgC\equiv CCD_3$ 

| No.  | Infrared |      | Raman |        | Calcd | PED                                 |                                   |
|------|----------|------|-------|--------|-------|-------------------------------------|-----------------------------------|
| 110. | solid    | soln | solid |        | Carca | 122                                 |                                   |
| 1    | 2102     | 2106 | 2101  | 2110 p | 2092  | 78S <sub>1</sub> 20S <sub>3</sub>   |                                   |
| 2    | 2117     | 2120 | 2119  | 2121 p | 2120  | $94S_2$                             |                                   |
| 3    | 2149     | 2156 | 2154  | 2158 p | 2168  | 66S <sub>3</sub> 19S <sub>1</sub>   | $12S_6$                           |
| 4    | 1110     | 1113 | 1109  | 1113   | 1110  | 54S <sub>4</sub> 38S <sub>6</sub>   |                                   |
| 5    | 932      | 935  | 929   | 929 p  | 935   | $64S_5 18S_2$                       | 10S <sub>7</sub>                  |
| 6    | 896      | 905  |       |        | 896   | 32S <sub>6</sub> 30S <sub>4</sub>   | 17S <sub>5</sub> 14S <sub>8</sub> |
| 7    | 507      | 504  | 505   | 509 p  | 500   | 79S, 12S <sub>5</sub>               |                                   |
| 8    | 320      | 325  | 322   | 325 p  | 323   | 70S <sub>8</sub> 14S <sub>7</sub>   |                                   |
| 9    | 2225     | 2227 | 2225  | 2232   | 2222  | $99S_9$                             |                                   |
| 10   | 2213     | 2211 | 2210  | 2210   | 2204  | $98S_{10}$                          |                                   |
| 11   | 1051     | 1035 | 1040  |        | 1033  | $94S_{11}$                          |                                   |
| 12   | 1030     | 1035 | 1040  |        | 1025  | $98S_{12}$                          |                                   |
| 13   | 822      | 820  | 829   |        | 817   | 84S <sub>13</sub> 11S <sub>15</sub> | ,                                 |
| 14   | 587      | 589  | 592   |        | 579   | $99S_{14}$                          |                                   |
| 15   |          |      | 349   | 347    | 343   | 68S <sub>15</sub> 28S <sub>16</sub> | ;                                 |
| 16   | 202      | 190  | 201   | 190    | 191   | $77S_{16} 22S_{17}$                 | ,                                 |
| 17   |          |      | 70    |        | 68    | 69S <sub>17</sub> 29S <sub>16</sub> | ;                                 |

Abbreviation: p, polarized.

Table 6. Symmetry force constants and their uncertainties for methyl-1-propynylmercury(II) $^{a)}$ 

|                  |        | σ     |             |       | σ     |
|------------------|--------|-------|-------------|-------|-------|
| $\overline{F_1}$ | 4.890  | 0.015 | $F_{9}$     | 4.721 | 0.012 |
| $F_2$            | 4.630  | 0.075 | $F_{10}$    | 4.648 | 0.012 |
| $F_3$            | 14.098 | 0.070 | $F_{11}$    | 0.546 | 0.003 |
| $F_4$            | 0.571  | 0.005 | $F_{12}$    | 0.513 | 0.003 |
| $F_{5}$          | 0.534  | 0.025 | $F_{13}$    | 0.680 | 0.007 |
| $F_6$            | 5.168  | 0.122 | $F_{14}$    | 0.428 | 0.004 |
| $F_7$            | 2.478  | 0.079 | $F_{15}$    | 0.533 | 0.096 |
| $F_8$            | 2.992  | 0.242 | $F_{16}$    | 0.316 | 0.019 |
|                  |        |       | $F_{17}$    | 0.228 | 0.030 |
| $F_{2,5}$        | -0.548 | 0.077 |             |       |       |
| $F_{4,6}$        | -0.364 | 0.020 | $F_{15,16}$ | 0.259 | 0.060 |
| $F_{5,7}$        | -0.096 | 0.040 | •           |       |       |
| $F_{7,8}$        | -0.471 | 0.225 |             |       |       |

a) The stretching force constants are given in mdyn/Å, the deformation force constants in mdyn.Å, the stretching-deformation interaction constants in mdyn.

Table 7. Comparison of force constants (mdyn/Å)

| f(M-CC)      | $f(M-CH_3)$                                                                                                        |
|--------------|--------------------------------------------------------------------------------------------------------------------|
| 2.99a)       | 2.48a)                                                                                                             |
| 2.831)       | 2.541)                                                                                                             |
|              | $2.55^{9}$                                                                                                         |
|              | $2.48^{9)}$                                                                                                        |
|              | $2.38^{9}$                                                                                                         |
| $3.30^{14}$  |                                                                                                                    |
| $3.35^{14}$  |                                                                                                                    |
| $3.30^{14}$  |                                                                                                                    |
|              | $2.97^{14}$                                                                                                        |
|              | 2.8815)                                                                                                            |
| $3.46^{16)}$ |                                                                                                                    |
|              | 2.8717)                                                                                                            |
|              | 2.6515)                                                                                                            |
|              | 2.99 <sup>a</sup> )<br>2.83 <sup>1</sup> )<br>3.30 <sup>1</sup> a)<br>3.35 <sup>1</sup> a)<br>3.30 <sup>1</sup> a) |

a) This work.

frequencies are satisfactory for the four isotopic species (Tables 2—5). The potential energy distributions are also given in these tables. A strong vibrational coupling exists between the C-C stretching and the CD<sub>3</sub> symmetric deformations (Tables 4 and 5, mode Nos. 4 and 6).

In these calculations, the symmetry force constants  $F_7$  and  $F_8$  turn out the  $\mathrm{CH}_3$ -Hg and Hg-CC valence stretching force constants. A comparison of force constants is given in Table 7. We see that the force constants for the M-CC bond are always larger than those for the M-CH<sub>3</sub> bond. This is in line with the expectation on the basis of the hybridization of the carbon atom adjacent to the metal atom; the sp hybrid in M-CC and the sp³ hybrid in M-CH<sub>3</sub>, make the former bond stronger than the latter.

One of authors (Y.I.) wishes to express his thanks to Assist. Prof. Fumio Watari for helpful suggestions throughout this work and for the computer programs used in calculations.

#### References

- 1) Y. Imai, F. Watari, and K. Aida, Spectrochim. Acta, Part A, in press.
- 2) L. G. Makarova and A. N. Nesmeyanov, "The Organic Compounds of Mercury," North-Holland Co., Amsterdam (1967), Chap. 5.
- 3) J. R. Johnson and W. L. McEwen, J. Am. Chem. Soc., 48, 469 (1926).
- 4) H. Hunziker, W. Good, R. Meyer, and H. H. Günthard, Helv. Chim. Acta, 45, 59 (1962).
- 5) R. J. Spahr, R. R. Vogt, and J. A. Nieuwland, J. Am. Chem. Soc., 55, 2465 (1933).
- 6) R. N. Jones and A. Nadeau, Spectrochim. Acta, Part A, 20, 1175 (1964).
  - 7) D. Grdenić, Quart. Rev., 19, 303 (1965).
  - 8) I. S. Butler and M. L. Newbury, Spectrochim. Acta, Part

- A, 33, 669 (1977).
- 9) P. L. Goggin, G. Kemeny, and J. Mink, J. Chem. Soc., Faraday Trans. 2, 72, 1025 (1976).
- 10) G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," D. Van Nostrand Co., New York (1964), pp. 333 and 338.
- 11) W. Gordy and J. Sheridan, J. Chem. Phys., 22, 92 (1954).
- 12) J. C. Mills, H. S. Preston, and C. H. L. Kennard, J. Organomet. Chem., 14, 33 (1968).
- 13) L. F. Thomas, E. I. Sherrad, and J. Sheridan, *Trans. Faraday Soc.*, **51**, 619 (1955).
- 14) J. L. Duncan, Spectrochim. Acta, Part A, 20, 1807 (1964).
- 15) F. Watari, Spectrochim. Acta, Part A, 34, 1239 (1978).
- 16) J. Parker and J. A. Ladd, *Trans. Faraday Soc.*, **66**, 1907 (1970).
- 17) E. Clark and A. Weber, J. Chem. Phys., 45, 1759 (1966).